In a copper sample, that drift velocity of electrons in 100 V/m electric field is 2.63m/s. The conductivity of copper is 5.5 x 10-7 Ω-1 m-1. Calculate mobility, electron density and relaxation time for electrons (mass of electron = 9.1 x 10-31 kg).
ANSWER : The following is the answer one by one :
1. Mobility of Electrons:
The formula for electron mobility (μ) in a conductor is given by:
\[ \mu = \frac{v_d}{E} \]
Where:
- \( \mu \) = electron mobility
- \( v_d \) = drift velocity of electrons
- \( E \) = electric field strength
Given:
- Drift velocity (\( v_d \)) = 2.63 m/s
- Electric field (\( E \)) = 100 V/m
Let's calculate the mobility of electrons using the formula:
\[ \mu = \frac{2.63 \, \text{m/s}}{100 \, \text{V/m}} \]
\[ \mu = 0.0263 \, \text{m}^2/\text{V s} \]
2. Electron Density:
The relationship between conductivity (\( \sigma \)), electron density (\( n \)), and electron charge (\( e \)) is given by:
\[ \sigma = n \cdot e \cdot \mu \]
Where:
- \( \sigma \) = conductivity
- \( n \) = electron density
- \( e \) = charge of an electron (\( 1.6 \times 10^{-19} \) C)
Given:
- Conductivity (\( \sigma \)) = \( 5.5 \times 10^{-7} \, \Omega^{-1} \text{m}^{-1} \)
- Charge of an electron (\( e \)) = \( 1.6 \times 10^{-19} \, \text{C} \)
- Electron mobility (\( \mu \)) = 0.0263 \( \text{m}^2/\text{V s} \)
We can rearrange the formula to solve for electron density (\( n \)):
\[ n = \frac{\sigma}{e \cdot \mu} \]
Let's plug in the values:
\[ n = \frac{5.5 \times 10^{-7} \, \Omega^{-1} \text{m}^{-1}}{1.6 \times 10^{-19} \, \text{C} \cdot 0.0263 \, \text{m}^2/\text{V s}} \]
\[ n \approx 1.98 \times 10^{28} \, \text{m}^{-3} \]
3. Relaxation Time for Electrons:
The relaxation time (\( \tau \)) of electrons is given by:
\[ \tau = \frac{m}{n \cdot e^2 \cdot \sigma} \]
Where:
- \( \tau \) = relaxation time
- \( m \) = mass of an electron
- \( n \) = electron density
- \( e \) = charge of an electron
- \( \sigma \) = conductivity
Given:
- Mass of an electron (\( m \)) = \( 9.1 \times 10^{-31} \, \text{kg} \)
- Electron density (\( n \)) ≈ \( 1.98 \times 10^{28} \, \text{m}^{-3} \)
- Charge of an electron (\( e \)) = \( 1.6 \times 10^{-19} \, \text{C} \)
- Conductivity (\( \sigma \)) = \( 5.5 \times 10^{-7} \, \Omega^{-1} \text{m}^{-1} \)
Let's calculate the relaxation time (\( \tau \)):
\[ \tau = \frac{9.1 \times 10^{-31} \, \text{kg}}{1.98 \times 10^{28} \, \text{m}^{-3} \cdot (1.6 \times 10^{-19} \, \text{C})^2 \cdot 5.5 \times 10^{-7} \, \Omega^{-1} \text{m}^{-1}} \]
\[ \tau \approx 2.03 \times 10^{-14} \, \text{s} \]
So, after calculations:
- Electron mobility (\( \mu \)) ≈ 0.0263 \( \text{m}^2/\text{V s} \)
- Electron density (\( n \)) ≈ \( 1.98 \times 10^{28} \, \text{m}^{-3} \)
- Relaxation time (\( \tau \)) ≈ \( 2.03 \times 10^{-14} \, \text{s} \)
Also Read : How does the Pressure Effect on Melting Point of Ice?
No comments: